
AD-AO81 443 CARNEGIE-M4ELLON UINIV PITTSBURGH PA DEPT OF COMPUTER -ETC F/G 9/2
CONCURRENT MANIPULATION OF BINARY SEARCH TREES. REVIS;ON U)
SEP 79 H T KUNG. P L LEHMAN NIGOlt4.76-C 0370

UNCLASSIFIED CMU-CS79145 N

MENNND



liiii ,_.
:1121 111122

IIi I lII

It~i~f IIII~. ~1.6

4

MICROCOPY RESOLUTION TEST CHAOT
NATIONAL BUREAU OF STANDARDS-i963-1 '

.4



77-

VAO~ ~ ~ ~ rob epaA

4 -

Vs r 
-7

a. 
4



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.



CS 79 145

t oncurrent .anipulation of j.inary Search Trees o j , , -

I H. TJung , Phili, L/ehma,/

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

July 1978

(Last revisedSeplwner WF79

Copyright -C- 1979 by H.T. Kung and Philip L. Lehman

AU Rights Reserved

This research is supported in part by the National Scien , Grant
MCS 78-236-76 and the Office of Naval Research under Contra KON 14-76-C-oO 70.

DTIC
ELECTE

BUINSTATEMENT A MAR 6 9800
Approved for public releoae

Distibution Unliited



ABSTRACT

The concurrent manipulation of a binary search tree is considered in this paper. The

systems presented can support any number of concurrent processes which perform

searching, insertion, deletion, and rotation (reorganization) on the tree, but allow any process

to lock only a constant number of nodes at any time. Also, in the systems, searches are

essentially never blocked. The concurrency control tPchniques introduced in the paper

include the use of special nodes and pointers to redirect searches, and the use of copies of

sections of the tree to introduce many changes simultaneously and therefore avoid

unpredictable interleaving. Methods developed in this paper may provide new insights to

other problems in the area of concurrent database manipulation.
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SECTION I INTROOUCT ION

1. Introduction
As the construction of large multiprocessors (such as Cm * [22]) becomes practicable, much

thought has been given to methods of exploiting these powerful computers. One natural and

important application is the use of the multiprocessing power to manipulate large data bases.

Multiprocessors might be used to simultaneously service the needs of several database users,

or to reduce the time necessary for a single complex task. In order to gain experience in this

direction, we studied the use of multiprocessors in manipulating a simple data structure

known as a binary search tree. As a result, we designed systems that could support any

number of the concurrent operations of insertion, deletion, and reorganization (specifically,

rebalancing) on the tree. Although the systems are designed for implementation on

multiprocessors, they are also useful for implementation on uniprocessors that support

multiprogramming. This paper presents these systems and discusses the ideas behind them.

Some General Techniques Used

One problem often encountered by concurrent systems is the necessity of doing a set of

operations simultaneously or indivisibly for correctness reasons. This occurs where any

partial completion of the 'set may lead to a temporary inconsistency in the data structure. To

solve this dilemna, we introduce the idea of "copies" of sections of the binary search tree.
These copies are to be created outside the tree, modified as appropriate to reflect the result

of the set of operations on the tree, and then introduced into the tree structure with a single,

indivisible operation. This technique may be used to simultaneously replace all of the pieces

of an old version of that section of the tree, effectively performing many modifications

simultaneously.

In using the copying technique, a substantial amount of work is done before the results of

that work are introduced into the data structure. Conversely, we also use the technique of
"postponement:" delaying any work that need not be done immediately. Each process only

does "what it has to do." Other processes can perform the postponed work separately. With

this technique, the unique multiprocessing capability supplied by multiprocessors is utilized.
This is particularly advantageous in the case where work cannot be done immediately, and a

process would have had to wait; instead, it can relegate the work to another process, to be

done when feasible.

Another difficulty generally encountered in asynchronous concurrent processing is that the

actions of one process may serve to invalidate some decisions made by another process. It

may be the case that a. process will see the tree "change out from under it." For this

possibility, we provide a recovery mechanism for "confused" processes, in the form of "back

pointers" that redirect processes whose position in the tree has been invalidated by the



SECTION I INTRODUCTION 2

actions of other processes. These back poinlers are attached to "blue nodes" which signal

the process that it is lost in the first place.

In designing algorithms to use these techniques, we tried to keep the general design of the

algorithms simple and efficient. For example, our locking scheme uses no reader locks; nor do

we permit any process to exclusively lock a node. We only use writer-exclusion locks that

prevent simultaneous update of a node by more than one process. The locking scheme itself

is also quite simple. No complex queueing mechanism is required to administrate lock

requests, on whose order 1he well-being of the system might depend. In addition, the

number of nodes which any process can lock at one given time is bounded by a very small

constant, placing a tight bound on the degree to which any single process can interfere with

others.

Utilizing the ideas mentioned above, we build a set of tree-mutating processes. In addition,

we study garbage collection mechanisms that make available for reuse nodes that have been

deleted from the tree. While garbage collection processes are not specifically tree mutators,

they are necessary for the completeness and correct functioning of the systems. We

illustrate two such mechanisms: a simple version with a single garbage collection process,

and a version that allows concurrent garbage collection (many collectors) to operate at the

same time as tree mutators. Here we note another illustration of the idea of postponement:

it is generally unnecessary to collect garbage immediately after it is generated.

Developing these algorithms has strengthened our belief that concurrent algorithms are for

the most part far less intuitive than sequential algorithms. This is one reason that much

attention has been given recently to the proof of the correctness of concurrent programs

(following in the footsteps of the work on verification of sequential programs). We offer

verifications of our systems, and include a sketch of the correctness proof for the concurrent

garbage collector.

Substantial work has been done on developing concurrent algorithms for the manipulation

of B-trees, which are a popular data storage structure, especially for large collections of data

(see appendix II). These algorithms have steadily improved, using as a measure the size of

the B-tree region locked by a process.. An adaptation of the results in the present paper

allows yet another improvement to B-tree algorithms along these lines (see [16]). Further

generalizations of the ideas presented here may suggest highly concurrent algorithms for

manipulating other data structures.

Outline of the Paper

In Section 2 we define the concurrent manipulation problem studied in the paper, state our
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assumptions and set up the definitions to be used in our correctness proofs. In the next

three sections (3, 4, and 5), we develop our concurrent systems. In Section 6 we propose a

simple garbage collection mechanism. A summary and concluding remarks are given in Section

7. In appendix I we elaborate upon a concurrent garbage collection mechanism. In appendix

II we give some background for this problem area, and describe related work that has been

done. In appendix 1! we offer a natural correctness criterion for concurrent search systems,

and argue that the properties we have proven for our systems together constitute a

sufficient condition for that criterion.

I I . ....II - 1 .. ...... Il ... ........ IIII t_ _ _ _ _ __
'

_ __"_ _ -III
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2. The Problem, Basic Definitions, and Assumptions

As mentioned above, the problem considered in this paper is the design of systems that

can support concurrent manipulations on a binary search tree. (For a general discussion of

binary search trees, see, e.g., (10]). We hope to achieve maximum concurrency without

impairing the correctness of the systems. In the following, we shall first describe the data

structure shared by all of the concurrent processes, and then define the problem more

precisely.

2.1 The Data Structure

The data structure consists of a directed graph and a queue, called GC-queue. The binary

tree is embedded in the directed graph. Let the nodes of the graph be labelled by integers

1,...,M, and the node labelled by n be in memory location n for all n-I .. ,. Node n (or simply

n) is used to refer to either the node labelled by n or the pointer to that node, depending on

the context. For the purpose of this paper, we assume that each node contains six fields: a

left pointer field, a right pointer field, a back pointer field, a color field, a value field and a

lock field. A pointer field contains either a pointer to a node or the null pointer "%." The

value field contains a value from a linearly ordered set. The color field contains the color of

the node, which is "white" or "blue"; nodes on the binary tree are always white and blue

nodes are never on the tree. (The use of this notation was motivated by the availability of

colored chalk.) The lock field of a node is set by a process in order to gain the right to

modify that node. Only one process at a time may have any given node locked.

The pointer contained in the left, right or back pointer field of node n is called the left,

right. or back pointer of n and is denoted by n.left, n.right or n.back respectively. Similarly,

the contents in the color, value, and lock fields of node n are denoted by n.color, n.value, and

n.lock, respectively. The topology of the graph is determined by the pointers of the nodes in

the graph. Let m and n be any two nodes. If m.left (respectively, m.right, m.back) - n, we

say that n is the left (r~iht., back) son of m and that m points o n through the left (right.

back) pointer of m. There are two special nodes denoted by ROOT and FREE. Node ROOT

corresponds to the root of the binary search tree. It is assumed that ROOT.value - "infinity,"

which is a value greater than any value one can search for. Node FREE points (through its

left pointer) to the first node of a list, called the free list (cf. Fig. 2-1), which is a sequence of

any number of nodes n|, n2 , ..., nk, satisfying the following properties:

Fl. FREE.left-n 1 , nk.right=A.

F2. For Isi<k, ni.right-ni~ t .

F3. For lsisk, ni.color-white.

F4. FREE.rightn k.
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FREE

n n n n
1 2 k-I k

Figure 2-1: The FREE node and free list.

Garbage (blue) nodes are nodes that have been deleted from the tree. Garbage nodes are

always inserted into the GC-queue. Through the garbage collection, nodes in the queue are

appended to the free list and are then ready to be reused.

2.2 Concurrent Processes on the Tree

We wish to perform processes of the following types co,2ctirrenty on the tree structure:

- Insertion is the processes of adding a value to the tree, if the value is not
already in the tree.

- Deletion is the process of removing an existing value from the tree.

- Rotation is the process of "rotating" a (sub)tree so that the heights of its
subtrees can be adjusted. Rotation is typically used for balancing a tree (see,
for example, [10), p. 454). In this paper rotation is also used for performing
deletion (see Section 5).

- Searching is the process of looking for a node with a given value v in the tree.
If a node with value Y exists, then the search is successful, otherwise it is
unsuccessful. Searching does not modify the tree, and is often used by other
processes. For example, if we wish to delete a value from the tree, then we must
first search for that value in the tree, since if it is not present, we cannot delete
it.

- Garbage collection is the process of appending garoage nodes to the free list so
that they can be reused.
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For correctness reasons we allow a process to lock one or several nodes against modification

by another process. But, for achieving a high degree of concurrency we require that the

number of nodes locked by any process at any one time be bounded by a small constant. In
addition, we try to delay searches as little as possible, since in general searching is done far

more often than modifying. The operation of locking (respectively, unlocking) a node n is

denoted by "lock(n)" ("unlock(n)").

2.3 Definitions for Correctness

We say that a concurrent system for manipulating a binary search tree is correct if the

system possesses the following properties:

Pl. The tree is always consistent. At any time, if we freeze the current tree, then an
inorder traversal (see, (10], p. 316) of the tree generates the nodes with values
in sorted order.

P2. The termination position of a search is always consistent. The termination
position of a (successful or unsuccessful) search is defined to be the last node
whose value is examined by the search before it is terminated. Consider a
search for value u. Suppose that it terminates at node n at time t. We require
that at the instant t if we freeze the tree and start a new search for the same
value Y from the root then n must be the termination position of the new search.

P3. There is no deadlock.

P4. An intended update is always carried ot. An insertion, deletion or rotation
process will indeed insert, delete or rotate as intended, before it terminates.

P5. A value u can be added to or deleted from the tree oniy by the search or deletion
process, respectiuely. (These processes are defined later.) In particular, only
nodes which are no Longer reachable by any existing or future search will be
garbage collected, and aU such nodes will be garbage collected.

Property P1 is clearly needed for maintaining the binary search tree. The necessity of

properties P3, P4 and P5 is also obvious. For property P2, we note that if it is not satisfied
then two searches for the same value may conclude differently on the same tree. Property

P2 is important to insertion and deletion processes, since searching is performed in those
processes. In fact, in Appendix III we shall show that properties P1 to P5 are sufficient

conditions for a natural correctness criterion for concurrent search systems.

2.4 Basic Assumptions

We shall prove correctness of a system based on the following assumptions:

Al. The tree is consistent initially, before any process has acted on it.
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A2. The search, insertion, and rotation pro~c res, which are defined later, are
"correct" when executed alone, in the senne that, starting from a consistent tree,
the search process will find a value if and only if the value is in the tree and the
insertion and rotation processes preserve the consi-tency of the tree.

A3. Each process can read or write on individual field- of a node as an indivisible
step.

A4. If process A attempts to lock a node which is already locked by process B, then
A must wait for B to unlock the node. In this caee, we say that process A is
blocked (by process B) at the node.

A5. The procedures cre-ate and append, defined in Sections 3 and 6, for manipulating
the free list are correct in the sense that they will preserve the properties of
the free list (cf. FI-F4 in Section 2.1).

Notice that to have processes satisfying A2 and A5 is quite standard. So for clarity in this

paper we chose to assume A2 and A5 rather than to prove them.

2.5 Database Record Considerations

This paper is not primarily concerned with the problem of updating records associated with

the keys in a database; rather, we focus on the problems of concurrent reorganization of the

part of the database containing the key structure. Here we will digress briefly to suggest

one possible method for associating records with thc keys in the tree.

To each node, we would add an additional field (which is ignored in the remainder of this

paper): the record field. This field contains a pointer to the record associated with the key

stored in that node. A specific implementation may decide to put this record on the disk or in

main memory. Regardless, the pointer in the node points to some large chunk of data that

constitutes the associated record. For each individual record, we would view that record as a

distinct database. To change information in this node, we might lock the whole record (as

distinct from locking the node itself). Alternatively, since we view the record as a database,

we could maintain its consistency as we would in a general database.
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3. A Search-Insertion System

In this section we describe a system which can support any number of concurrent searches

and insertions on a binary search tree, and prove the correctness of this system. The

procedures and correctness proof methods presented in this section will form the basis for

constructing and proving more complex systems considered in later sections of the paper.

3.1 An Example

We want to demonstrate that a concurrent system consisting of the usual sequential

searching and insertion processes without modifications is incorrect. Consider Example 3.1 on

a simple tree with ROOT.left=a and a.value=1, as depicted in figure 3-1. In the example,

variables s and r are local to processes search(2) and insert(2), respectively.

ROOT

a

Figure 3-1, A simple tree.

.0 -ilill
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search(2) insert(2

<previous steps -- start at ROOT>
I. s-a

2. r_a
3. 2>s.value(=1)
4. ss.right
5. sisX
6. 2>r.value(= 1)
7. r r.ripht
8. r is X
9. insert a node with

value 2 as the right
son of node a

10. Value 2 does not exist!

Example 3.1

Note that at step 10 the search incorrectly concludes that the value 2 does not exist in the

tree. Equivalently, property P2 is not satisfied at the time when the search terminates. The

problem can be solved by introducing some locking scheme into the sequential processes.

This modification is described below.

3.2 The System

The Search Process

Search: This procedure searches for a node in the tree wilh a given value, Y.

procedu.re search(u)
(f,di r)_find(ROOT,v);
s_f.dir;
if sPX then print "Value u is at node s"
else print "Value v is not in the tree" Ji;
unlock(f);

The procedure find(n,u) is defined below. It consists of the usual descent through a tree

and is expressed recursively for clarity. It is readily seen that the termination position of

search(u) (intuitively, the node for which we are looking) is f.dir if the search is successful

and is f if the search is unsuccessful. The procedure find is an auxiliary procedure that is

used by several processes considered in this paper.

F.: The following procedure searches for a node with value v, starting from node n, with

n.valuep'v. (Recall that we assumed that ROOT.value - "infinity." Hence find(ROOTea) is
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always well-defined since ROOT.value > v for all Y.) The procedure returns a pair (f,dir),
where f is a node and dir is a direction (left or right). At the time when the procedure
returns (f,dir), node f is locked, and has the property that if value v exists in the tree
then f points through the pointer dir to a node whose value is vi (i.e. [f.dirjlvalue-v),

otherwise f.dir-k.

procedure f ind(n,y)
f M,
ifv -c f.value then dir - left else dir -right fi;
s f.dir; /*Choose correct son*/
if s#)% and s.value~i then

return find(s,y) /*Recurse*/
eue

lock(f);
if s,'f-dir then /*It slipped away (see note below)*/

unlock(f);
return find(f,m) /*So recurse*/

else return(f,dir) fl /*Found it*/
Ai

Note that after the lock(f) operation the process makes sure that f is stiU the father of s
(i.e., s-f-dir). This is necessary, since another concurrent insertion process might have
changed f.dir and unlocked f between the time that find decided that "s-k or s.value-v" and
the time that find tried to (ock(f). In this case, find must resume the search at node f again.

The Insertion Process

Insertion~ This procedure inserts a node with value v into the tree (at one of the leave s), if
no such node already exists in the tree.

procedure insert(u)
(f,dlir)_Iind(ROOT,Y4,
if f.dir,'X then

print 'Value v is already in the tree";

ceunlock(f)

create(w) /*Build a node*/
w.lef t ;

w.value-v;
f.dirW; /*Point to it*/
unlock(f)

The procedure create(w), which is a standard free list manipulation procedure (with
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synchronization), is defined as follows:

Create: This procedure creates a new node named w, by removing it from the free list.

procedure create(w)
lock(FREE);
if FREE.left=FREE.right then

abort the process which calls create and inform
the system that the free list is empty

eLse
wFREE.left;

FREE.left_(FREE.left .right
fi
unlock(FREE);

At this point the reader is advised to convince himself that the locking scheme used in

procedure find indeed solves the problem demon-.trated by Example 3.1. It is also instructive
to note that a search process is never blocked by other processes, except possibly at the

time right before it terminates. This property holds for all the systems considered in the

paper.

3.3 Property P2' -- A Property for Proving P2

It is difficult to prove property P2 defined in Section 2.3 by induction on time, since it is

only meaningful as a property at the terminalion time of a search. Here we define another
property, property P2', which implies property P2 but in more convenient to use for the

(inductive) correctness proofs in later sections of the paper.

Consider a search for value u (denoted by search(u)). Suppose that the search starts and

terminates at time t0 and t I, respectively. For any t, t([t 0 ,t I] we define TP(t) and TProot(t)

as follows. (TP(t) and TProot(t) denote termination positions.) Suppose that at time t we
"freeze" the current tree (i.e. its structure) in the following sense: after time t, no process is

allowed to make any change on any pointer field, but each process must proceed to the point
where it must make a pointer change, or it is blocked by another process. As it so proceeds,
it locks and releases the same locks as it wou(d ordinarily. The important point here is that

the structure of the tree is not changed, but all processes proceed as far as they can to

avoid impeding a search through the tree.

Now consider the continuation of search(u) on the tree frozen at time t, with the search

starting from wherever it was at time t. Then with respect to the tree frozen at time t,

search(v) may or may not terminate, depending upon whether or not the node it has to lock is
already locked by another process. We define TP(t) to be the termination position of
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search(u) if it terminates; otherwise TP(t) is undefined. Similarly, with respect to the same

tree frozen at time t, we define TProot(t) to be the termination position of a new search that

starts searching from the root of the tree for the same value u. TProot(t) is undefined if the

new search does not terminate.

Property P2' is stated as follows:

P2'. For any search which starts at to and terminates at tj,

TP(t),TProot(t)

for any t([to,t I] for which TP(t) is wel-defined.

In this new terminology, property P2 can be expressed as:

P2. For any search,

TP(t )-TProot(t 1)

where t1 is the termination time of the search.

It is seen that P2' implies P2, since by the definition of t1 , TP(t 1 ) is well-defined.

3.4 The Correctness Proof of the System

We only need be concerned with properties PI and P2'; it is trivial that the system

satisfies properties P3, P4 and P5. By assumption Al, properties P1 and P2' hold initially.

We assume (inductively) that properties P1 and P2' hold up to time t, when a change to the

tree structure, f.dir.w, is made. For proof purposes we may assume that no two operations

are done at exactly the same time. Hence we may choose (>O so that in the interval [t-(,t+(]

the change at time t is the only operation done by any process. Let T- and T be the tree

frozen at times t-( and t+(, respectively. Note that T is the tree resulting from ;- by adding

w as the "dir" son of f. This is illustrated in Fig. 3-2, assuming "dir" equal to "right."

We wish to prove the following two assertions (a) and (b).

a. Property PI holds at time t+(. Consider the insertion responsible for the change
at time t. Note that the insertion process is simply a search followed by a
pointer change. Since the search satisfies P2' at time t-(, one can view that the
change at time t is done by the insertion executed alone on tree T-. Therefore
by assumption A2 property P1 holds at time t (.

b. Property P2' holds at time t+(. Consider a search process, say, search(v), which

'In this paper, we use the notation f.dir " to refer to the node pointed to by node f in the direction specified by
*ir " (which is usually a variable), or to refer to a pointer to that node. The notation ' die " refers to the dretion
complementary to " dir ". Hence if dir-left then dir'-risht, and vice vwse.
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(a)

f;

(b)
f

0 <X

x >,

Figure 3-2: Trees T- and T" describing the status of
the system at times t-( and to(, respectively.

starts before time t-( and terminates after t+( (i.e. it is in progress when the
pointer is changed at time t). By the inductive assumption that P2' holds up to
time t, we know that the assertion is true for tree T-. For the purpose of
proving P2 at time t+(, we can assume that TP(t+() is well-defined. In the
following, we wish to prove that on To the termination position TP(t+<) of
search(u) coincides with that, TProot(t4(), of another search process, namely,
find(ROOT,u).

Case L TP(-) is well-defined. Then TP(t-) (-TProot(t-()) must not be
node f, since f is locked at time t4 by the insertion process responsible
for the change f.dir-w, and TP(t+)-f would make TP(t+() undefined. This
implies that TP(t) and TProot(t) are constants over [t-(,t+(], since the
change f.dir -w has no effect on them. (We rely, of course, on assumption
A2 of the correctness of the pointer change involved.) Therefore TP(t+i) -
TProot(t ().

Case 2. TP(t-() is not well-defined. Since TP(t+() is well-defined, in
defining TP(t-() the continuation of the search, search(u), on T- must be
blocked at node f. There are two cases, depending on the state of the
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process search(?.,) at time t-(:

i. The process search(u) has not yet examined f.dir at time t-(. Then
on T4 search(u) will correctly reach either f.dir' or f.dir as
find(ROOT,u) does, since the search uses the updated f.dir.

ii. The process search(u) has read f.dir as X at time t-(. Then on T + ,

search(u) will find f.dir (-w) ,)X and thus start searching from f. This
implies that search(m) will again correctly reach w as find(ROOT,V)
does.

We have shown that the pointer change done by an insertion process preserves properties

P1 and P2'. Therefore, by induction, P1 and P2' always hold.

3.5 Comments on Locking

Notice that the find procedure locks the father of the node whose key has the value for

which find is searching. (Consequently, the search procedure also locks that node.) However,

for purposes of simply reporting the "instantaneous" existence of a key in the database the

find and search procedures can be modified by deleting the lock/unlock calls to provide the

ability to search without locking. While we have omitted those versions of find and search

from the present paper for purposes of clarity, we would certainly include such procedures

in a full system, where simultaneous examination of nodes by several processes was likely to

occur.

Notice, however, that locking the associated record is often necessary. For example,

locking would be used in the case that some modification will be made to the associated

record, once the key is found (see Section 2.5). In this case, we would lock the record (or

possibly some segment of the record) to prevent change by another process.

Similarly, record locking may be necessary during prolonged examination of a node and its

record. For example, if we wish to guarantee that a key continues to exist while we examine

its record, then we must lock the node containing that key to prevent deletion by another

process. Again, we might instead wish to lock some segment of the record to prevent

modification to that segment.
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4. A Search-Insertion-Rotation System

In this section we extend the system of Section 3 to include rotation processes. Important

ideas of this paper such as the use of back pointers, copying and blue nodes are introduced

in this section.

4.1 An Example

The following example illustrates the kind of problems we might encounter when rotations

are executed concurrently with search. -Consider Example 4.1 for rotating and searching the

tree shown in Fig. 4-1(a).

a5 5a
rotation

Is5c 10 bC

(a) (b)

Figure 4-1: Rotating (b,c) to the left: oe, 4 and a are subtrees. 4

search(20) rotation

2. 20>s.value(-5)
3. s s.rizht(-b)
4. :20>s.value(-1O)
5. a.right c
6. c.lef Ib
7. b~iT1_j1
8. s~s.right(-b.right-/;)

Example 4.1
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Note that at step 8, the search starts to search subtree /? for value 20 in the rotated tree
(i.e. the tree in Fig. 4-1(b)), while at this time a search from the root for the same value 20

(in the same tree) will terminate in subtree A. Property P2 is therefore violated. Our

solution to this problem is to first establish a rotated version of the structure in a copy

outside the tree. (in particular, we create copie. b' and c" of nodes b and c in figure 4-2.)

We then connect the copy into the tree by changing just one pointer from node a, which is

an indivisible operation. The nodes in the old structure are changed to blue nodes and

inserted into GC-queue, and are to be collected by garbage collectors. (The garbage

collection process will be described in Section 6.) By providing "back pointers," we ensure

that those search processes which are at blue nodes can still come out to reach their
"correct" termination positions. The result of rotating the tree shown in Fig. 4-1(a) using this

new method is illustrated in Fig. 4-2.

/

p bI I
I I
I I

I #,

\ .!

c/

Figure 4-2: Results of rotation (of the tree in Fig. 4-1 (a))
using the idea of copying. In the diagram, blue (or garbage) nodes
are indicated by dotted circles, and back pointers by dashed lines.

_ _ _ I
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4.2 The System

The rotation process, which follows, performs a rotation by building a copy of the section

of the tree to be altered and then replacing the old section with the modified new section. In

this version of the rotation procedure, we include some code that will only be useful when

used (in Section 5) with the deletion procedure. For example, locking the new nodes (b' and

c') is unnecessary for the rotation procedure itself, since once the procedure switches from

the old version to the new version by a pointer change, it no longer uses b and c'.

Also of interest is the use of a "back. pointer," which was mentioned earlier. This pointer

has no meaning for ("white") nodes that are part of the tree. However, for "blue" nodes, the

back pointer is used to continue the search when the father of the node for which find is

searching has been deleted (made blue) while find was deciding whether the node was, in

fact, the father of the desieed node.

The Rotation Process

Rotation: Suppose that a, a.dirl and ra.diril.dir2 are three consecutive white nodes on a
path. The following procedure moves a.dirl away from the path by performing a

rotation.1 It is assumed that a and a.dirl are locked when this procedure is called. The

procedure returns (a,c',b') where c' = a.dirl and b' c'.dir2', with c', b' locked.

procedure rotation(a,dir 1,dir2)
b_a.dirl;
c b.dir2;
create(b'); create(c'); /*Set up new nodes*/
lock(c'); lock(b'); lock(c);
c'.dir2_c.dir2; c'.dir2'_b'; c'.value.c.value;
b'.dir2_c.dir2'; b'.dir2' b.dir2'; b'.value-b.value;
a.dir 1 _c'; /*Change the treee/
b.back a; /*Back pointers*/
color b blue; /*And blue nodes*/
c.back.c';
color c blue;
enqueue nodes b and c in GC-queue;

/*For garbage collection*/
unlock(a); unlock(b, unlock(c); /*Unlock a, b, c*/
return (a,c',b')

'In this paper we do not wish to restrict our result to any specific type of balanced tree such a' the AVI. tree.
Therefore, for the balancing purpose, schemes of deciding where rotofinns should take place will not be specified.
Recent schemes by Guibas and Sedgewick(g] on detecting rotations to be performed based on local information seem to
be perticulerly ulitable to our systems.
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The search and insertion processes are the same as those defined in Section 3. But the

procedure find(n,u) must be redefined (as follows) to handle the presence of blue nodes. In

particular, it must consider the possibility that f became blue between the decision to lock it

and the actual locking of the node.

Find: The modified find procedure. This version of find uses deleted ("blue") nodes and back

pointers in order to continue searching from a deleted node.

procedure find(n,u)
f_n;
if v < f.value then dir left else dir - right fi;
s f.dir; /*Find son*/
i'f s#X and s.value Ov then

return find(sv) /*Next level*/
else

lock(f);
if f is blue then /*Just missed getting node*/

unlock(f);
return find(f.back,u)

/*Follow back pointer from blue node*/
else

if sff.dir then
unlock(f); /*Some process changed it*/
return find(f,u)

else return(fdir) /*Found it*/
fi

fi

4.3 The Correctness Proof of the System

We only need be concerned with properties P1, P2' and P3; it is trivial that the system

satisfies properties P4 and P5. Since a rotation process always locks nodes on a path in

top-to-bottom order, there is no danger of deadlock. Hence property P3 is satisfied. We

now prove that properties PI and P2' hold. This proof uses the framework and terminologies

established in section 3.4.

By assumption Al, PI and P2' hold initially. We also assume (inductively) that they hold up

to time t, when a change performed by a rotation process is made to the tree structure. We
need not be concerned with changes due to insertions, since, by the results of Section 3, we

know that insertions will preserve properties P1 and P2'. Define (, T- and T as in Section

3.4.

a. Propert7 PI holds at time t+(. Note that the rotation process locks all the nodes

L~.
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it reads and writes. Hence the proof follows directly from assumption A2.

b. Property P2' holds at tinme t*(. As before, conf-ider a search process, say,
search(u), which starts before time t-( and terminates after t+(. By the inductive
assumption that P2' holds up to time t, we know that the assertion is true for
tree T-. Again, we assume that TP(t+() is well-defined and want to prove that
on T+ the termination position, TP(t+'), of search(u) coincides with the
termination position, TProot(t+(), of find(root,u).

Case 1. The change at time t is a.dir I _c' or b.back a (cf. Fig. 4.3).

•i cl

b

Figure 4-3: The new tree formed after the operation a.dirf_;'.

i. TP(t-() is well-defined. Then TP(t-() (=TProot(t-()) must not be a, b,
or c, since they are all locked at time t-(. This implies that TP(t) and
TProot(t) are constant over [ti-(,ti+(J, since the change at time t has
no effect on them. That is, search(u) or find(root,v) will terminate at
the same node on either T- or T . Therefore, TP(t+() - TProot(t+).

ii. TP(t-() is not well-defined. Then search(u) on T- must be blocked at
some node. It is still blocked on T+, since no lock will be released
after the change at time t and before the next pointer change. This
contradicts the assumption that TP(t+() is well-defined,

Case 2. The change at time t is c.back c'.

i. TP(t-() is well-defined. The proof that TP(t+) , TProot(t+() is the



SECTION 4 A SEARCH-INSERTION-ROTATION SYSTEM 20

same as that in part (i) of case 1.

ii. TP(t-() is not well-defined. Then we can conclude that search(m) on
T- must be blocked at a, b or c, since: (1) these are the only nodes
whose locks will be released on T* by the action at time t and (2)
search(u) is unblocked at time t (recall that TP(t ) is well-defined).
Further, on T+ search(p) will always come out from the garbage
nodes to reach correct white nodes. The procedure find(root,v)
does this, by utilizing the back pointers to resume the search
through the tree.
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5. A Search-insertion-Rotation-Deletion System

In this section, we further extend our system to include concurrent deletion processes.

Unlike other operations considered so far, deletion is not a "local" operation in the sense that

it may have to make changes in two sections of the tree that are arbitrarily distant from each

other. That is, the node to be deleted and the node with which it is to be replaced can be

arbitrarily far apart. This makes the deletion operation difficult to deal with in a concurrent

system where only a constant number of nodes may be locked by a process at any time. In

this section, we shall demonstrate how "nonlocal" operations such as the deletion operation

can still be correctly incorporated into a concurrent system using only "local" locks. This is

achieved through the repeated use of the rotation process introduced in section 4.

5.1 An Example

Example 5.1 and Figure 5-1 illustrate that an existing searching process may become

incorrect when another deletion process is executing concurrently.

search(15) delete(20)

<previous steps>
1. 15 > f.value (=5)
2. s_f.right (=a)
3. 15 < s.value (=20)
4. s_s.left (=b)
5. <search(20), obtain node a>
6. <search for the node in the

left subtree of a which has
the largest value (node e,
in this case)>

7. replace a with e
8. 15 > s.value (=7)

Example 5.1

After step 7, the searching process searches for value 15 in the left subtree of node e (cf.

the tree in Fig. 5-1(b)). Property P2 is not satisfied because find(root,15) would search the

right rather than the left subtree of node e.

In general, suppose that node a is the node to be deleted and node a' is the node with

which node a is to be replaced. Then any active search process that has passed node a while

searching for a value between a'.value and a.value will become inconsistent after the deletion.

In the following we propose a method for dealing with this problem.
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f 5f f

a 20 delete(20) e14

e 14 gi11

(a) (b)

Figure 5-1: Deletion of node a with value 20.

5.2 The System

The search, insertion and rotation processes are the same as those defined in Section 4.

The deletion process is described as follows.

Note that if at least one son of the node to be deleted is X (which should occur with more

than .5 probability), then the deletion is very simple. This is illustrated in Fig. 5-2. The

procedure remove defined below performs this simple deletion. Briefly, the procedure works

by changing the pointer from the father (a) of the node (b) to be deleted to point "around*

that node. (This only works when b has only one son, since node a cannot use the same

pointer to point to two nodes simultaneously.) This operation removes b from the tree. A
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back pointer is provided (which points from b to a) for any process that was searching at b
when a.dir was changed, so that the search can continue correctly.

5aa

to b iNo

is 5C 15 C

(a) (b)

Figure 5-2: The simple deletion case.

The Deletion Process

Remove: This procedure removes a node (a.dir * ) when it is known that one son of that node

((a-dirl).dir2') is X. Nodes a and a.dirl are locked when the procedure is called, and are

unlocked when the procedure ends.

procedure remove(a~dir Idir2)
b_a.dirl1;
c-b.dir2;
a.dir I _c; /*Point around b*/
b.dir2'-c; /*Redirect search from b: b~left-b.right-cs/
b.backa; /*Provide back pointer*/
color b blue; /*And blue node*/
enqueue node b in CC-queue /*For garbage collection*/
unlock(a);
unlock(b);

The deletion process described below is formulated as two steps: (1) find the correct node
and (2) delete it (handled by the procedure dcietion-by-rotae ion).

Deiete: This procedure deletes a node with value v from the tree, if such a node exists.
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procedure delete(u)
(f,dir)find(root ,u);
if f.dir = X then

print "value u is not in the tree";
unlock(f);

else
s f.dir;
lock(s);
deletion-by-rotation(f,dir) /*Do the dirty work*/

fl

The procedure deletion-by-rotation(f,dir) is defined below. Since simple deletion by the

remove procedure is sometimes not possible, this procedure moves the node to be deleted

down in the tree to a place where that action is possible. It does this by repeatedly rotating

the node to a lower position in the tree (using the rotation procedure defined in Section 4),

until it is possible to call remove to actually delete the node. After this has been

accomplished, the procedure works its way back up the tree in an attempt to rebalance the

tree. In particular, the procedure moves the node down the tree by recursive calls on itself.

After deletion, it rebalances by going back up the tree (again using rotation), after each

recursive call returns.

In the version of the dele:,on-by-rotation procedure that we give here, all operations are

biased in one direction for purposes of clarity and simplification of the algorithm. This

directional bias is not necessarily unreasonable if the deletion starts on a balanced tree or if

the information about the structure of the tree is not available. If one were striving for

efficiency, one could add additional code to optimize the direction in which rotations and

removals were to be done, using information about the structure of the tree.

Note that in the call to rotation, in the returned triple (f,g,h), h is the new copy of the node

to be deleted, and f is identical to the procedure parameter f.

Deletion b% Rotation: The following procedure deletes node f.dir by (recursively) performing

a sequence of rotations that serve to move f.dir to a position lower in the tree where it

can be removed by the procedure remove given above (ending the recursion). Nodes f

and f.dir are locked when the procedure is called. The procedure also rebalances the

tree after deletion when such rebalancing is still possible. The procedure ends with no

locks set.

procedure deletion-by-rot ation(f,dir)
s.f.dir;
if s.left - X then remove(f,dir,right) /*End recursion*/

/*(Note: Example of directional bias)*/
else
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(f,g,h)_rotation(f,dir,left); /*Move f.dir down*/
if h.left = X then

/*Don't need to rehalance on last recurive call*/
deletion-by-rotation(g,right);

else /*Do recursion and rebalance*/
deletion-by-rotation(g,right); "/ Recursive call*/

/*N.B.: at this point, no nodes are Ioc,.ed*/
lock(f); /*Begin rebalance*/
if g 4 f.dir or f is blue then

/*Can't rebalance, since things have changed*/
unlock(f)

else
lock(g);
(f,g',h')_rotation(f,dir,right);
unloc k(');
unlock(h')

fi
fi

fi

It is relatively easy to check that the inclusion of the procedure remove preserves the

correctness of the system in Section 4. If the sytem in the current section is deadlock-free,

then we can conclude that it is correct, since it is built from the procedure remove and the

system in Section 4. To show that the system is deadlock-free, we note that at any level of

recursion, when the deletion-by-rotation call returns, no nodes are locked. For each level at

which rebalancing is attempted, therefore, only new locks are used. Furthermore, they are

applied using the top-down discipline. Thus, deadlocks cannot occur in the system.

An alternative solution to the problem concerning deletions would be to simply leave

locked all nodes locked by the deleter, and then unlock them "on the way back up," after

rebalancing. However, this would violate our constraint of never locking more than a constant

number of nodes at one time.
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6. Garbage Collection

In this section we consider the problem of correctly appending garbage nodes to the free

list.

6.1 An Example

The following example illustrates that for garbage collection one cannot simply append blue

nodes to the free list. Refer to figure 5-2.

search(20) delete(l0)

I. r a
2. 20>r.value(-5)
3. r_r.right(-b)
4. <delete(b)>
5. garbage-coiLect(b)
6. compare r.value(=b.value)

with 20

Example 6.1

Note that the comparison in step 6 is erroneous, since node b no longer exists- in the tree.

It should have been left (blue) and not garbage collected so the search could have recovered

from the deletion. This is why -- in the procedures given above -- we only enqueue blue

nodes to be garbage collected. The garbage collector must be careful not to collect a node to

which another process might still have access.

6.2 Remarks

Rules for a garbage collector are simply that it not collect garbage too soon, but that it

also doesn't have to wait "too long.0 These can be stated more formally as:

1. Let f be a node that is detached from the tree. If f is referenced -- or can be
referenced -- by any process, then f is not yet garbage ready to be collected.

2. When the garbage collector prepares to collect node f, it only has to wait for
that particular node (not for later copies of the node) to no longer be
referenceable.

LYS:
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6.3 A Solution

In this section we offer a simple solution with a single garbage collector. In appendix I we

sketch modifications to the concurrent tree manipulation processes that allow a. number of

garbage collectors to operate concurrently with the tree mutators.

Perhaps the simplest way to solve the problem is as follows. Periodically, the garbage

collector freezes the garbage collection queue (CC-queue) in the following sense: it locks the

queue (against any insertion to it by the tree mutator-), copies it (to, say, a queue

GC'-queue), resets the original queue (GC-quCue) to its empty state, and unlocks it. (Copying

GC-queue and resetting it can be done in constant time for arbitrarily long queues if the

queue is stored as a linked list.) Then, it waits until all of the currently running processes

have terminated. These are the processes that started running before GC-queue was locked

by the garbage collector, i.e. the processes which might access the garbage (blue) nodes in

GC'-queue. (Such a wait might be implemented, for example, by having each process enter in

a log the time when it starts and terminates. The C process would then wait until "OUT"

entries appeared in the log for each process thai had an "IN" entry, but no "OUT" entry, at

the time the GC-queue was locked.) After this wait, the garbage collector returns each of the

garbage nodes in GC'-queue to the free list by using the append procedure defined below.

ADDend: This procedure returns a node to the free list.

procedure append(n)
n.colorwhite;
n.right.;
lock(FREE);
[FREE.right ].rightn;
FREE.right_n;
unlock(FREE)

With this solution, blue (or garbage) nodes may not be appended to the free list for some

long period of time after they become garbagc. This is undesirable for situations where

space utilization is crucial. Note, however, that, because white nodes never point to blue

nodes in our systems, the existence of blue nodes has no effect on the speeds of those

searches through the tree which started after these nodes had become garbage nodes. Also,

the execution of the append procedure is carried out in parallel with other processes. Thus

it appears that this simple solution is quite acceptable as far as search speeds are concerned.

_____.... ...... ._ J~1
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7. Summary and Concluding Remarks

In this paper, we have examined some of the details of a particular problem in concurrent

database manipulation. To the authors' knowledge, many of the properties of the systems

presented are not achievable on the basis of any existing general theory on concurrency

control. For example, in the two-phase locking scheme offered by Eswaran, et.aL [7], a

search process would be required to lock all nodes in the search path, and would not release

any of these locks until the end of the search. The special structure of binary search trees

enables us to design concurrent systems enjoying a high degree of concurrency. For further

discussion and results on how special information about a problem can help the design of

efficient concurrent database systems, see [1l, 12].

We summarize some of the important contributions emoodied in the concurrent binary

search tree systems presented in this paper:

The algorithms use neither reader locks, nor exclusive locks. Only
writer-exclusion locks are used, simply to prevent the obvious problems
engendered by simultaneous update of a node by more than one process. The
locking scheme used to apply these locks is simple. In particular, it is
implementable without the overhead incurred by a queue manager or a system
supervisor.

- The size of the region of the tree which is locked by a process at any time is
bounded by a (small!) constant.

The idea of copying -- doing large amounts of work outside the data structure
and then indivisibly introducing all of the changes simultaneously -- is a useful
technique for removing some of the inherent complexity of concurrent
operations.

The back pointers and bhLe nodes are a specific instance of the idea of a general
mechanism for recovery from some of the "confusion" caused by concurrency.
Such a 'iechanism is provided for use by processes whose earlier actions have
become invalid as a result of the actions of another process.

In order to take full advantage of the power of multiprocessing, we introduce the
idea of postponentent. This is embodied by the rule: "A process should only do
what it has to do.' Often, nothing is lost by allowing a second process to
continue the work begun by a first process. In fact, waiting time may sometimes
be avoided by postponing work (e.g. collection of the garbage nodes produced
by a process is postponed and is eventually performed by a garbage collector
process).

- We present a fairly rigorous proof of the correctness of our concurent systems.
In doing so we demonstrate that such correctness can be proved, and we
develop techniques for use in these proofs.

- Two garbage collection mechanisms are offered. There are auxilliary to the main
tree system. They allow us to further exploit the concurrency available by using
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some of the techniques mentioned above (copying, postponement, etc.), and
decoupling the necessary garbage collection from the main tree operations
(insertion, deletion, reorganization).

Binary search trees represent a very simple structure for storing data. Further work

should try to extend some of the ideas presented in this paper to more general database

systems.
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Concurrent Garbage Collection

1.1. The Problem

In section 6 we presented a simple approach to the garbage collection problem. Here we

sketch modifications to the set of concurrent processes given in the paper which will allow a

set of concurrent garbage collectors to operate correctly in parallel with the tree mutators.

The garbage collectors will never incorrectly collect a blue node that might still be used by

some process (as was described in Example 6.1). This scheme should be used when space

utilization is important, since garbage is collected and returned to the free list very quickly

(relative to the batched collection suggested in Section 6).

Concurrent garbage collection in a list processing environment has recently received much

attention (see, for example, (5] and (13]). The problem considered in this appendix is

different in that the safety of collecting a garbege node depends upon whether or not it is

reachable by any existing or future search; knowing that the node is not reachable from the

root does not ensure the safety of collecting the node. The idea of the method desribed in

this appendix is to use reference counts to guarantee that only blue nodes that are no longer

reachable by any existing or future search will be garbage collected. Note that in a tree

there are no cycles; so we don't encounter some of the problems of using reference count
schemes in general list processing. We assume' that in addition to the usual fields, each node

also has two reference counters: node.ref[O] and node.ref[il, and one index (or indicator)

field, node.index, to designate which counter is currently in use for that node. The field

node.index can take either 0 or 1 as a value to designate one of the two reference counts.

We further assume that interchanging between these two values (denoted "comp" for

complement) is an indivisible operation and that incrementing and decrementing reference

counts (denoted "inc" and ."dec") can also be done indivisibly.

1.2. The System

In this section, we demonstrate the modifications to the procedures given above that will

allow concurrent garbage collection as described.

The search process used in previous sections must be redefined to handle updates for

reference counts. For any node n, n.ref(0], n.ref[l] and n.index are initially set to zero by

the create procedure.

Ir " - :r . . . . . . . ..- . .. . . . : . . . . . , . . . . . ...., 
, - ,

-.-. . . ... . . . .. . . .. . . . . . _ -. . .-
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The Search Process

Search: This procedure searches for a node in the tree with a given value, v.

procedure search(m)
j...ROOT.index;
inc ROOT.ref[ib /*Reference ROOT*/
(f,dir)_ind(ROOTj,v);
s-f.dir;
if ON~ then print "Value v is at node s"
else print "Value v is not in the tree" fi;
unlocV,(f);,

The procedure find(n,i,v) is redefined as follow . When the procedure is calted, f.ref~i] has
already been incremented by the search process which calls the procedure.

Find: Recursively performs the search, modifying reference counts as appropriate.

procedure I indi n,i .a)
fi _n;
if v < f.value then dir _ left else dir - right fi;
s f.dir; /*Find son*/
if s#X and s.valuc 0v then

(js.indley; inc s.ref~j]); /*Reference son*/
/*(Operations inside ( ...) assumed indivisible)*/

dec f.refi; /*Then dereference father*/
return V ind(s,j,z') /*Next level*/

eLse
lock(f);,
if f is blue then

unlocf h
tf.back; /*Get pointer to back son*/

fjt.index; inc; t.ref[j]); /*Reference it*/
dec fLref~i]-; /*Then dereference this one*/
return find(f.back,j,v) /*Follow back pointer*/

eleif sf.dir then
unlock(f); /*Lost it*/
return find(f,i,z')

else /*tFound it*/
dec f.ref(i];
Feturn(f,dir)

fi
fi

The new version of the insert procedure follows:
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The Insertion Process

Insertion: This procedure inserts a node with value Y into the tree (at one of the leaves), if
no such node already exists in the tree.

procedure inserth')
j-ROOT.indew;
inc ROOT.ref(j]; /*Reference ROOT*/
(f,dir)_find(ROOTj,0i;
if f.dirp'\ then

print "Value Y' is already in the tree";
unlock(f)

else
create(w); /*Build a node*/
w.Ieft).;
w.right -X;
w.valueuv;
f.dir w; /*Point to it*/
unlockmf

The new delete procedure:

Delete: This procedure deletes a node with value a' from the tree, if such a node exists.

procedure delete(m)
(f,dir)_f ind(ROOT,
if f.dir - X then

print "value a' not in tree";
unIOCK'(f);

eses-f.dir;

lock(s);
deletion -by-rot ation(f,dir) /*Do the dirty work*/

The procedure deletion-by-rotation is modified as follows:

Delietion b_ Rotation:

procedure deletion-by-rotation(f,dir)
1f.index;

inc f.re((i3;.
s_f.dir;
if s.left - X. then remove(f,dir,right) /*End recursion*/

/*(Nte:t Example of directional bias)*/

(f,g,h)_yotation(f,dir,left) /*WMove f.dir down*/
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if hll X . then
/*Don't need to rebalance on W1s recurive call*/

deletlion -by -raltation(e,right);
eLse /*Do recursion and rebalance*/

deletion-by-rotation(g,righ); /*Recursive c all*/
/sN.B.: at this point, no nodes are locked*/

Iock(f); /*8egin rebalance*/
if # , f.dir or f is blue then

/*Can't rebalanice, since things have changed*/

e~eunlock(f)

lock(g);
(f,g',h')_rotation(f,dir,right);
unlock(gi);
unlock(h')

ft
fl

dec f.refi];

Create: This procedure creates a new node named w, by removing it from the free list. It
also sets the reference counts and index for w to zero.

procedure create(w)
lock(FREMh
if FREE.left-FREE.right then

abort the process which calls create and inform
the system that the free list is empty

else
wFREEleft;
FiEE.left_[FREE.leftJright

unlock(FREEhi
w.refEOLO; w.refj1lLO; w.indexOp;

The procedures append, remov~e, and rotation are the same as that given above in the main
part of the paper.

We include in the algorithm below steps to handle the multiple garbage collectors case.
For this purpose, we require the use of the additional field for each node mentioned above:
the GC-lock field. Garbale collectors use this lock to prevent confusion caused by switching
a reference count field while another garbage collector is 01il using it. There is also a single
lock on the entire GC-queue; this lock is also used by the enqueue operation in the rotation
and remove procedures. Moreover, for technical reasons, in the rotation procedure we
enqueue the triple (a,b,c) rather than the nodes b and c, and in the remove procedure we
enqueue the pair (a,b) rather than node b.
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The Garbage Collection Process

Carbaaze-ColLector* This process appends garbage nodes to the free list.

lock(GC-queue); /* single lock for GC-queue*/
get (a,b,c) (or (a,b) for which the algorithm is

similar) from GC-queue;
lock a for GC; /* set GC-lock field of a*/
unlock(GC-queue);
a.index-comp a.index; /*switch a*/
i-comp a.index; /*Old counter*/
while a.ref[i] > 0 wait; /*Let old processes drain*/
unlock a for GC; /*Wc're done with it*/
lock(b); /*Make sure no CC is*/
unlock(b); /*using b*/
i b.index;
while b.ref[i] > 0 wait; /*be sure everyone done with b*/
append(b); /*append b to free list*/
if we got (a,b) instead of (a,bc) then returnt; /*Done*/
lock(c); /*Make sure no GC is*/
unlock(c); /*using c*/
i-c.index;
while c.ref(i] > 0 wait; /*be sure everyone done with c*/
append(c) /*append c to free list*/

The procedure append(n) was defined in Section 6.

1.3. Comments and Justification

Note the simplicity of the GC operation taken sequentially for collection of nodes b and c.

It consists of switching the counter on node a (thus searches arriving at a after the switch

will increment the reference count in the new counter), letting the old processes "drain" from

a, letting b drain, freeing b, and if we have a triple (a,bc) then letting c drain and freeing c.

The concurrent garbage collection works simply because we do the switch on a after b

becomes garbage. Then we let all old processes drain from a. After this step, any process

which can access a must access it at some time after a enters the GC-queue, which

guarantees that it accesses a after a no longer points to b. Then we simply have to wait for

all old processes to drain from b. This means that b is safe to free.

Further, suppose we are running concurrent garbage collectors that might interfere with

each other. We first observe that only one tuple in the CC-queue can have any node, b, as

the non-first node. Otherwise that node would have been deleted from the tree twice before

being returned to the free list. This is clearly impossible based on the operation of the
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deletion and rotation (and search) algorithms.

Now suppose that two garbage collectors are working, say, on the tuples (a,b) and (b,c).

(The case of ordered triples instead of ordered pairs is an easy generalization.) Then we can

show that it is impossible that the tuples were removed from the GC-queue in the order:

(a,b), (b,c). This is, of course, equivalent to hemr. placed in the queue in that order. If this

were so, then consider placing (b,c) in the queue. Placing this tuple in the queue implies that

the node c was removed from the tree, and that node b was the father of c, but was still in

the tree. However, at the time that (b,c) was placed in the queue, (a,b) is already in the

queue, implying that node b had previously been removed from the tree. For (b,c) to be

placed in the queue, both b and c must be locked; similarly for (a,b). But then after (a,b) is

placed in the queue, b must be unlocked before it can be locked by the process that locks b

and c and places (b,c) in the queue. Therefore, this latter process locks a node that has been

deleted from the tree. However, such a lock (oi a blue node) is checked for, and immediately

released if detected. Therefore, a node that had been deleted from the tree would not be

the first element in an ordered pair (triple) placed in the GC-queue. This contradicts the

placement of (b,c) in the queue after (a,b).

Therefore, we know that the tuples occur in the order: (b,c), (a,b).

Lastly, we observe that a garbage collector, say g, locks node b (from tuple (a,b) or (a,b,c))

to guarantee that other garbage collectors (those using it in tuples of the form (bc) or

(b,c,x)), say g', are done with it. Any such g' would lock node b while in the critical section of

the garbage collector (protected by lock/unlock(GC-queue)). This means that g cannot lock b

until all tuples (b,x) -- that occur in the queue before (a,b) -- have been processed to the

extent that they have locked (and then unlocked!) b.Therefore, node b will not be garbage

collected by g until it is safe to do so.

--.
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II. Related Work

In this appendix, we discuss alternative solutions to the problem presented in this paper,

and related work that has been done. In discussing alternative solutions, we point out some

of the advantages and disadvantages of each.

Somhe relevant Literatutre. (This list is by no mpans complete.) For examples of the design

and construction of multiprocessors see Wulf and Bell (24], and Swan, Fuller and Siewiorek

[22]. For examples of verification methodology, see Dijkstra's book [4], and the

comprehensive survey by Manna and Waldinger [17] (and its references). For extensions of

verification ideas to parallel programs, see the work by Owicki [19] and Lamport [14). In the

database systems area, research in concurrency and integrity control has been done, for

example, by: Eswaran et.aL [7), Gray [8), and Ries and Stonebreaker [20).

Since B-trees (see Bayer and McCreight [2] or Knuth (10]) have been found convenient for

storing large amounts of data in the sequential case, many database systems have been

constructed using B-trees (or often B*-trees; see Wedekind [23]) as the main data structure

(e.g., Astrachan, et.aL[1]). These structures have the advantage that they are balanced by

definition (although this does not preclude the necessity of other forms of reorganization).

While we chose to examine the structure of binary search trees, much similar work on the

question of concurrent operations on B-trees and B*-trees has been done. We note,

however, that the branching factor in most practical B-trees is such that the number of levels

required to store large amounts of data rarely exceeds four. This raises the question of just

how much concurrency we can squeeze into such a flat structure.

a. The first solution t'-lhe concurrent B-tree problem was advanced by Samadi
[21]. His approach is to use semaphores to exclusively lock the path along which
modifications may take place, effectively locking the entire subtree of the highest
node locked.

b. Bayer and Schkolnick [3] improve upon this by proposing a parametrized
algorithm for concurrent B*-tree manipulation. This algorithm locks upper
sections of the tree with writer-exclusion locks (which do not lock out readers),
until the actual modifications need to be done (when exclusive locks are finally
applied), thus increasing the concurrency.of the algorithm.

c. Miller and Snyder [18] are working on a solution which locks a region of the tree
of bounded size (which is close to our notion of locking a region of constant
size). This locked region propagates up the tree, performing appropriate
modifications to the tree structure.

d. Ellis (6) presents a solution for 2-3 trees (generalizable to B-trees) which uses
several methods to enhance concurrency. These methods include an application
of Lamport's idea for correttly reading and writing simultaneously [15]. The
algorithms Ellis presents allow temporary departures from the tree structure in
order to minimize the cost of maintaining consistency during concurrent
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operations. Also, "relaxing a process's responsibility to do its own work" is a
specific case of our idea of post poncnwnt; the structUral degradation caused by
one process may be fixed later by another.

e. A paper by Lehman and Yao f161 will contain a more extensive survey of these
ideas, along with a concurrent B*-Iree al~orithm thait uses some of the ideas in
the present paper to achieve minimal (constant size) locking and high

Giconcurrency.
Gubas and Sedgewick's (9] schcme for repre-enting many types of tree structures as

"dlichramalic" binary trees, suggests that the problems of conc~irrently maintaining more

general trees may be reducible to the set of problems studied in the present paper.
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Iii. A Correctness Criterion for Concurrent Search Systems

The binary search tree or any physical database storage structure can be viewed as an

implementation of the abstract notion of some data storage mechanism. The abstract notion

specifies properties of various operations that we wish to perform on the database.

In this paper, we have adopted a natural ab, tract notion: the responses given by the

search processes must correctly reflect the results of the modifying operations on the

database. For example, if the following operations take place (shown in order of termination

time) then the responses given by the search processes must be the ones shown on the right
hand side.

insert(l)
insert(2)
search(2) response: "Yes."
delete(2)
search(1) response: "Yes."
search(2) response: "No."

rotate

That is, search(v) returns the answer "Yes" if and only if the number of successful insert(u)

operations which have terminated so far is strictly larger than the number of successful

deiete(u) operations which have terminated. We use the same abstract notion for concurrent

database systems. We say a concurrent system is correct if it implements the abstract notion.

It is necessary to define more precisely what we mean by "termination time of a process"

in a concurrent environment. We define this as the instant at which an updating process

makes its last modification to the database link structure or the instant at which a query

process reports the result of its search. We can easily argue that properties P1 to P5 are

sufficient for the correctness criterion stated here. (Actually, they also guarantee no

deadlocks and completion of all processes.) Since by P5 a value u will not be added to or

deleted from the tree without using insert(v) or delete(v), respectively, we only need to check

that a search(u) returns "Yes" (i.e., finds u) if and only if v is in the tree. This is guaranteed

by P1 and P2; P1 ensures that the tree is always consistent, and thus by P2 the search will
find v if and only if it is in the tree (since the search process on the "frozen" tree is correct

in the sense of assumption A2).

j =.
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